If there is one prayer that you should pray/sing every day and every hour, it is the LORD's prayer (Our FATHER in Heaven prayer)
It is the most powerful prayer. A pure heart, a clean mind, and a clear conscience is necessary for it.
- Samuel Dominic Chukwuemeka

For in GOD we live, and move, and have our being. - Acts 17:28

The Joy of a Teacher is the Success of his Students. - Samuel Dominic Chukwuemeka

Solved Examples on Modular Exponentiation

Samuel Dominic Chukwuemeka (SamDom For Peace) Verify your answers as applicable with the Modulo Arithmetic and Algorithms Calculators

Solve all questions.
Use the four methods for each question where applicable.
Name each method that you use.
If any method is not applicable, state the reason(s) why it is not applicable.
Verify that you have the same answer for each question using the methods.
Show all work.

(1.) Calculate $3^{57} \mod 317$
Method: Fast Modular Multiplication

$1st$ Step: Convert the exponent to a binary base. $$ \begin{array}{c|c} 2 & 57 \\ \hline 2 & 28 \:R\: 1 \\ \hline 2 & 14 \:R\: 0 \\ \hline 2 & 7 \:R\: 0 \\ \hline 2 & 3 \:R\: 1 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards $$ $$ 57 = 111001_2 $$ $2nd$ Step: Write the place values of the binary digit. $$ \begin{align} 2^5\ \ 2^4\ \ 2^3\ \ 2^2\ \ 2^1\ \ 2^0\ \ \\ 1\ \ \ 1\ \ \ 1\ \ \ 0\ \ \ 0\ \ \ 1~~\ \ \ \end{align} $$ $3rd$ Step: Simplify. Write the main problem as a product of smaller exponents.

$ 3^{57} = 3^{(1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0)} \\[3ex] = 3^{(1 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 0 * 2 + 1 * 1)} \\[3ex] = 3^{(32 + 16 + 8 + 0 + 0 + 1)} \\[3ex] Apply \:the\: laws\: of\: exponents \\[3ex] = 3^{32} * 3^{16} * 3^8 * 3^0 * 3^0 * 3^1 \\[3ex] = 3^{32} * 3^{16} * 3^8 * 1 * 1 * 1 * 3 \\[3ex] Going\: forward\:, we\: shall\: forget\: the\: zeros \\[3ex] There\: is\: no\: need\: to\: write\: them \\[3ex] Because\: any\: base\: exponent\: zero\: gives\: 1 \\[3ex] 3^{57} \mod 317 \\[3ex] = (3^{32} * 3^{16} * 3^8 * 3) \mod 317 \\[3ex] = 3^{32} \mod 317 * 3^{16} \mod 317 * 3^8 \mod 317 * 3 \mod 317 \\[3ex] 3 \mod 317 = \color{red}{3} \\[3ex] We\: have\: 3^8, \:3^{16}, \:3^{32} \\[3ex] My\: advice:\: Do\: it\: in\: twos\: assume\: 3^8\: gave\: a\: large\: result \\[3ex] However,\: 3^8 = 6561 \\[3ex] So,\: we\: can\: go\: ahead\: and\: do\: it\: directly \\[3ex] 3^8 \mod 317 \\[3ex] = 6561 \mod 317 \\[3ex] = \color{red}{221} \\[3ex] 3^{16} \mod 317 = (3^8)^2 \mod 317 \\[3ex] = (221)^2 \mod 317 \\[3ex] = 48841 \mod 317 = \color{red}{23} \\[3ex] 3^{32} \mod 317 = (3^{16})^2 \mod 317 \\[3ex] = (23)^2 \mod 317 \\[3ex] = 529 \mod 317 \\[3ex] = \color{red}{212} \\[3ex] 3^{57} \mod 317 \\[3ex] = (3^{32} * 3^{16} * 3^8 * 3) \mod 317 \\[3ex] = (3^{32} \mod 317 * 3^{16} \mod 317 * 3^8 \mod 317 * 3 \mod 317) \mod 317 \\[3ex] = (212 * 23 * 221 * 3) \mod 317 \\[3ex] = 3232788 \mod 317 \\[3ex] = 22 \\[3ex] $ $\therefore 3^{57} \mod 317$ = $22$

(2.)


This means that $231$ needs to be converted to a number in base two.

$ \begin{array}{c|c} 2 & 231 \\ \hline 2 & 115 \:R\: 1 \\ \hline 2 & 57 \:R\: 1 \\ \hline 2 & 28 \:R\: 1 \\ \hline 2 & 14 \:R\: 0 \\ \hline 2 & 7 \:R\: 0 \\ \hline 2 & 3 \:R\: 1 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards \\[3ex] 231 = 11100111_2 \\[3ex] $ $231 = 11100111_2$
(3.) Calculate $3^{57} \mod 317$
Method: Modular Exponentiation Algorithm

$1st$ Step: Write the values of $a, b, n$

Compare $3^{57} \mod 317$ to $a^b \mod n$

$ a = 3 \\[3ex] b = 57 \\[3ex] n = 317 \\[3ex] $ $2nd$ Step: Find the binary representation of $b$ $$ \begin{array}{c|c} 2 & 57 \\ \hline 2 & 28 \:R\: 1 \\ \hline 2 & 14 \:R\: 0 \\ \hline 2 & 7 \:R\: 0 \\ \hline 2 & 3 \:R\: 1 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards $$
$57 = \langle 111001 \rangle$

$3rd$ Step: Form a table and use the Modular Exponentiation algorithm to solve the problem.

$ 57 = \langle 111001 \rangle \\[3ex] \langle 111001 \rangle = 111001_2 \\[3ex] = 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 \\[3ex] $ This means that: $i = 5...down\: to\: 0$
$i$ are the exponents.
$b_i$ are the binary representations (the face values).

$ a = 3 \\[3ex] b = 57 \\[3ex] n = 317 \\[3ex] b_5 = 1 \\[3ex] b_4 = 1 \\[3ex] b_3 = 1 \\[3ex] b_2 = 0 \\[3ex] b_1 = 0 \\[3ex] b_0 = 1 \\[3ex] $ Let us do the algorithm step-by-step

Initial: $c = 0$, $d = 1$

For $i = 5$
$b_5 = 1$
$c = 2c$
$c = 2 * 0$
$c = 0$

$d = (d * d) \mod n$
$d = (1 * 1) \mod 317$
$d = 1 \mod 317$
$d = 1$

But $b_5 = 1$
$c = c + 1$
$c = 0 + 1$
$c = 1$

$d = (d * a) \mod n$
$d = (1 * 3) \mod 317$
$d = 3 \mod 317$
$d = 3$


We shall not initial again. The initialization is for the first case.

For $i = 4$
$b_4 = 1$
$c = 2c$
$c = 2 * 1$
$c = 2$

$d = (d * d) \mod n$
$d = (3 * 3) \mod 317$
$d = 9 \mod 317$
$d = 9$

But $b_4 = 1$
$c = c + 1$
$c = 2 + 1$
$c = 3$

$d = (d * a) \mod n$
$d = (9 * 3) \mod 317$
$d = 27 \mod 317$
$d = 27$


For $i = 3$
$b_3 = 1$
$c = 2c$
$c = 2 * 3$
$c = 6$

$d = (d * d) \mod n$
$d = (27 * 27) \mod 317$
$d = 729 \mod 317$
$d = 95$

But $b_3 = 1$
$c = c + 1$
$c = 6 + 1$
$c = 7$

$d = (d * a) \mod n$
$d = (95 * 3) \mod 317$
$d = 285 \mod 317$
$d = 285$


For $i = 2$
$b_2 = 0$
$c = 2c$
$c = 2 * 7$
$c = 14$

$d = (d * d) \mod n$
$d = (285 * 285) \mod 317$
$d = 81225 \mod 317$
$d = 73$

But $b_2 = 0$
Stop.


For $i = 1$
$b_1 = 0$
$c = 2c$
$c = 2 * 14$
$c = 28$

$d = (d * d) \mod n$
$d = (73 * 73) \mod 317$
$d = 5329 \mod 317$
$d = 257$

But $b_1 = 0$
Stop.


For $i = 0$
$b_0 = 1$
$c = 2c$
$c = 2 * 28$
$c = 56$

$d = (d * d) \mod n$
$d = (257 * 257) \mod 317$
$d = 66049 \mod 317$
$d = 113$

But $b_0 = 1$
$c = c + 1$
$c = 56 + 1$
$c = 57$

$d = (d * a) \mod n$
$d = (113 * 3) \mod 317$
$d = 339 \mod 317$
$d = 22$

$i$ $5$ $4$ $3$ $2$ $1$ $0$
$b_i$ $1$ $1$ $1$ $0$ $0$ $1$
$c$ $1$ $3$ $7$ $14$ $28$ $57$
$d$ $3$ $27$ $285$ $73$ $257$ $22$
return $d$
$\therefore 3^{57} \mod 317$ = $22$
(4.)


This means that $100632$ needs to be converted to a number in base two.

$ \begin{array}{c|c} 2 & 100632 \\ \hline 2 & 50316 \:R\: 0 \\ \hline 2 & 25158 \:R\: 0 \\ \hline 2 & 12579 \:R\: 0 \\ \hline 2 & 6289 \:R\: 1 \\ \hline 2 & 3144 \:R\: 1 \\ \hline 2 & 1572 \:R\: 0 \\ \hline 2 & 786 \:R\: 0 \\ \hline 2 & 393 \:R\: 0 \\ \hline 2 & 196 \:R\: 1 \\ \hline 2 & 98 \:R\: 0 \\ \hline 2 & 49 \:R\: 0 \\ \hline 2 & 24 \:R\: 1 \\ \hline 2 & 12 \:R\: 0 \\ \hline 2 & 6 \:R\: 0 \\ \hline 2 & 3 \:R\: 0 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards \\[3ex] 100632 = 11000100100011000_2 \\[3ex] $ $100632 = 11000100100011000_2$
(5.) Calculate $11^{644} \mod 645$
Method: Fast Modular Multiplication

$1st$ Step: Convert the exponent to a binary base. $$ \begin{array}{c|c} 2 & 644 \\ \hline 2 & 322 \:R\: 0 \\ \hline 2 & 161 \:R\: 0 \\ \hline 2 & 80 \:R\: 1 \\ \hline 2 & 40 \:R\: 0 \\ \hline 2 & 20 \:R\: 1 \\ \hline 2 & 10 \:R\: 0 \\ \hline 2 & 5 \:R\: 1 \\ \hline 2 & 2 \:R\: 1 \\ \hline 2 & 1 \:R\: 0 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards $$ $$ 644 = 1010000100_2 $$ $2nd$ Step: Write the place values of the binary digit. $$ \begin{align} 2^9\ \ 2^8\ \ 2^7\ \ 2^6\ \ 2^5\ \ 2^4\ \ 2^3\ \ 2^2\ \ 2^1\ \ 2^0 \\ 1\ \ \ 0\ \ \ 1\ \ \ 0\ \ \ \ 0\ \ \ \ 0\ \ \ \ 0\ \ \ \ 1\ \ \ 0\ \ \ 0\ \ \ \end{align} $$ $3rd$ Step: Simplify. Write the main problem as a product of smaller exponents.
$ 11^{644} \\[3ex] Forget\: the\: zeros \\[3ex] = 11^{(1 * 2^9 + 1 * 2^7 + 1 * 2^2)} \\[3ex] = 11^{(1 * 512 + 1 * 128 + 1 * 4)} \\[3ex] = 11^{(512 + 128 + 4)} \\[3ex] Apply \:the\: laws\: of\: exponents \\[3ex] = 11^{512} * 11^{128} * 11^4 \\[3ex] 11^{644} \mod 645 \\[3ex] = (11^{512} * 11^{128} * 11^4) \mod 645 \\[3ex] = 11^{512} \mod 645 * 11^{128} \mod 645 * 11^4 \mod 645 \\[3ex] 11^4 \mod 645 \\[3ex] = 14641 \mod 645 \\[3ex] = \color{red}{451} \\[3ex] We\: have\: 11^4, 11^{128}, 11^{512} \\[3ex] My\: advice:\: Do\: it\: gradually\: because\: 11^{128} \:gives\: a\: large\: result \\[3ex] Let\: us\: do\: 11^8, 11^{16}, 11^{32}, ... \\[3ex] We \:may\: skip\: around\: if\: we\: find\: a\: result\: that\: is\: not\: large \\[3ex] 11^8 \mod 645 \\[3ex] = (11^4)^2 \mod 645 \\[3ex] = 451^2 \mod 645 \\[3ex] = 203401 \mod 645 \\[3ex] = 226 \\[3ex] 11^{16} \mod 645 \\[3ex] = (11^8)^2 \mod 645 \\[3ex] = 226^2 \mod 645 \\[3ex] = 51076 \mod 645 \\[3ex] = 121 \\[3ex] 11^{32} \mod 645 \\[3ex] = (11^{16})^2 \mod 645 \\[3ex] = 121^2 \mod 645 \\[3ex] = 14641 \mod 645 \\[3ex] = 451 \\[3ex] Did\: you\: notice\: something?\: \\[3ex] Let\: us\: save\: some\: time \\[3ex] 11^{64} \mod 645 \\[3ex] = (11^{32})^2 \mod 645 \\[3ex] = 451^2 \mod 645 \\[3ex] = 226 \\[3ex] 11^{128} \mod 645 \\[3ex] = (11^{64})^2 \mod 645 \\[3ex] = \color{red}{121} \\[3ex] 11^{256} \mod 645 \\[3ex] = (11^{128})^2 \mod 645 \\[3ex] = 451 \\[3ex] 11^{512} \mod 645 \\[3ex] = (11^{256})^2 \mod 645 \\[3ex] = \color{red}{226} \\[3ex] 11^{644} \mod 645 \\[3ex] = (11^{512} * 11^{128} * 11^4) \mod 645 \\[3ex] = (11^{512} \mod 645 * 11^{128} \mod 645 * 11^4 \mod 645) \mod 645 \\[3ex] = (226 * 121 * 451) \mod 645 \\[3ex] = 12333046 \mod 645 \\[3ex] = 1 \\[3ex] $ $\therefore 11^{644} \mod 645$ = $1$

(6.)


This means that $1001001101001010$ in base two needs to be converted to a number in base sixteen.

We shall use the $\:BIN \rightarrow DEC \rightarrow HEX \rightarrow OCT \rightarrow QUA \:$ Conversion Table

Each digit in $HEX$ is equivalent to four digits in $BIN$
We split the digits in a set of four digits each.
$1001001101001010_2$
$1001 \:0011\: 0100\: 1010$
We have a complete set of four digits each. We are good.
We begin from behind
$1010 = A$
$0100 = 4$
$0011 = 3$
$1001 = 9$
We write it upwards (beginning from the bottom)
$9 \:3\: 4\: A$
$\therefore 1001001101001010_2 = 934A_{16}$
(7.) Calculate $11^{644} \mod 645$
Method: Modular Exponentiation Algorithm

$1st$ Step: Write the values of $a, b, n$

Compare $11^{644} \mod 645$ to $a^b \mod n$

$ a = 11 \\[3ex] b = 644 \\[3ex] n = 645 \\[3ex] $ $2nd$ Step: Find the binary representation of $b$ $$ \begin{array}{c|c} 2 & 644 \\ \hline 2 & 322 \:R\: 0 \\ \hline 2 & 161 \:R\: 0 \\ \hline 2 & 80 \:R\: 1 \\ \hline 2 & 40 \:R\: 0 \\ \hline 2 & 20 \:R\: 0 \\ \hline 2 & 10 \:R\: 0 \\ \hline 2 & 5 \:R\: 0 \\ \hline 2 & 2 \:R\: 1 \\ \hline 2 & 1 \:R\: 0 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards $$
$644 = \langle 1010000100 \rangle$

$3^{rd}$ Step: Form a table and use the Modular Exponentiation algorithm to solve the problem.

$ 644 = \langle 1010000100 \rangle \\[3ex] \langle 1010000100 \rangle = 1010000100_2 \\[3ex] = 1 * 2^9 + 0 * 2^8 + 1 * 2^7 + 0 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 \\[3ex] $ This means that: $i = 9...down\: to\: 0$
$i$ are the exponents.
$b_i$ are the binary representations (the face values).

$ a = 11 \\[3ex] b = 644 \\[3ex] n = 645 \\[3ex] b_9 = 1 \\[3ex] b_8 = 0 \\[3ex] b_7 = 1 \\[3ex] b_6 = 0 \\[3ex] b_5 = 0 \\[3ex] b_4 = 0 \\[3ex] b_3 = 0 \\[3ex] b_2 = 1 \\[3ex] b_1 = 0 \\[3ex] b_0 = 0 \\[3ex] $ Let us do the algorithm step-by-step

Initial: $c = 0$, $d = 1$

For $i = 9$
$b_9 = 1$
$c = 2c$
$c = 2 * 0$
$c = 0$

$d = (d * d) \mod n$
$d = (1 * 1) \mod 645$
$d = 1 \mod 645$
$d = 1$

But $b_9 = 1$
$c = c + 1$
$c = 0 + 1$
$c = 1$

$d = (d * a) \mod n$
$d = (1 * 11) \mod 645$
$d = 11 \mod 645$
$d = 11$


We shall not initial again. The initialization is for the first case.

For $i = 8$
$b_8 = 0$
$c = 2c$
$c = 2 * 1$
$c = 2$

$d = (d * d) \mod n$
$d = (11 * 11) \mod 645$
$d = 121 \mod 645$
$d = 121$

But $b_8 = 0$
Stop.


For $i = 7$
$b_7 = 1$
$c = 2c$
$c = 2 * 2$
$c = 4$

$d = (d * d) \mod n$
$d = (121 * 121) \mod 645$
$d = 14641 \mod 645$
$d = 451$

But $b_7 = 1$
$c = c + 1$
$c = 4 + 1$
$c = 5$

$d = (d * a) \mod n$
$d = (451 * 11) \mod 645$
$d = 4961 \mod 645$
$d = 446$


For $i = 6$
$b_6 = 0$
$c = 2c$
$c = 2 * 5$
$c = 10$

$d = (d * d) \mod n$
$d = (446 * 446) \mod 645$
$d = 198916 \mod 645$
$d = 256$

But $b_6 = 0$
Stop.


For $i = 5$
$b_5 = 0$
$c = 2c$
$c = 2 * 10$
$c = 20$

$d = (d * d) \mod n$
$d = (256 * 256) \mod 645$
$d = 65536 \mod 645$
$d = 391$

But $b_5 = 0$
Stop.


For $i = 4$
$b_4 = 0$
$c = 2c$
$c = 2 * 20$
$c = 40$

$d = (d * d) \mod n$
$d = (391 * 391) \mod 645$
$d = 152881 \mod 645$
$d = 16$

But $b_4 = 0$
Stop.


For $i = 3$
$b_3 = 0$
$c = 2c$
$c = 2 * 40$
$c = 80$

$d = (d * d) \mod n$
$d = (16 * 16) \mod 645$
$d = 256 \mod 645$
$d = 256$

But $b_3 = 0$
Stop.


For $i = 2$
$b_2 = 1$
$c = 2c$
$c = 2 * 80$
$c = 160$

$d = (d * d) \mod n$
$d = (256 * 256) \mod 645$
$d = 65536 \mod 645$
$d = 391$

But $b_2 = 1$
$c = c + 1$
$c = 160 + 1$
$c = 161$

$d = (d * a) \mod n$
$d = (391 * 11) \mod 645$
$d = 4301 \mod 645$
$d = 431$


For $i = 1$
$b_1 = 0$
$c = 2c$
$c = 2 * 161$
$c = 322$

$d = (d * d) \mod n$
$d = (431 * 431) \mod 645$
$d = 185761 \mod 645$
$d = 1$

But $b_1 = 0$
Stop.


For $i = 0$
$b_0 = 0$
$c = 2c$
$c = 2 * 322$
$c = 644$

$d = (d * d) \mod n$
$d = (1 * 1) \mod 645$
$d = 1 \mod 645$
$d = 1$

But $b_0 = 0$
Stop.

$i$ $9$ $8$ $7$ $6$ $5$ $4$ $3$ $2$ $1$ $0$
$b_i$ $1$ $0$ $1$ $0$ $0$ $0$ $0$ $1$ $0$ $0$
$c$ $1$ $2$ $5$ $10$ $20$ $40$ $80$ $161$ $322$ $644$
$d$ $11$ $121$ $446$ $256$ $391$ $16$ $256$ $431$ $1$ $1$
return $d$
$\therefore 11^{644} \mod 645$ = $1$
(8.)


This means that $934A$ in base sixteen needs to be converted to a number in base two.

We shall use the $\:BIN \rightarrow DEC \rightarrow HEX \rightarrow OCT \rightarrow QUA \:$ Conversion Table

Each digit in $HEX$ is equivalent to four digits in $BIN$
$934A_{16}$
We begin from behind
$A = 1010$
$4 = 0100$
$3 = 0011$
$9 = 1001$
We write it upwards (beginning from the bottom)
$1001 \:0011\: 0100\: 1010$
Remove any leading zero(s) if any.
Leading zeros are zeros that may be in front of the first set of digits.
In this case, there are no leading zeros.

$\therefore 934A_{16} = 1001001101001010_2$
(9.)


This means that $CAF57$ in base sixteen needs to be converted to a number in base two.

First Method:$\:HEX \rightarrow DEC \rightarrow BIN$
This is a long method.

$ HEX \rightarrow DEC \\[3ex] CAF57_{16} \\[3ex] = 12 * 16^4 + 10 * 16^3 + 15 * 16^2 + 5 * 16^1 + 7 * 16^0 \\[3ex] = 12 * 65536 + 10 * 4096 + 15 * 256 + 5 * 16 + 7 * 1 \\[3ex] = 786432 + 40960 + 3840 + 80 + 7 \\[3ex] \therefore CAF57_{16} = 831319 \\[3ex] DEC \rightarrow BIN \\[3ex] \begin{array}{c|c} 2 & 831319 \\ \hline 2 & 415659 \:R\: 1 \\ \hline 2 & 207829 \:R\: 1 \\ \hline 2 & 103914 \:R\: 1 \\ \hline 2 & 51957 \:R\: 0 \\ \hline 2 & 25978 \:R\: 1 \\ \hline 2 & 12989 \:R\: 0 \\ \hline 2 & 6494 \:R\: 1 \\ \hline 2 & 3247 \:R\: 0 \\ \hline 2 & 1623 \:R\: 1 \\ \hline 2 & 811 \:R\: 1 \\ \hline 2 & 405 \:R\: 1 \\ \hline 2 & 202 \:R\: 1 \\ \hline 2 & 101 \:R\: 0 \\ \hline 2 & 50 \:R\: 1 \\ \hline 2 & 25 \:R\: 0 \\ \hline 2 & 12 \:R\: 1 \\ \hline 2 & 6 \:R\: 0 \\ \hline 2 & 3 \:R\: 0 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards \\[3ex] 831319 = 11001010111101010111_2 \\[3ex] $ $CAF57_{16} = 11001010111101010111_2$

Second Method:$\:BIN \rightarrow DEC \rightarrow HEX \rightarrow OCT \rightarrow QUA \:$ Conversion Table
This is a short method.

Remember that each digit in $HEX$ is equivalent to four digits in $BIN$
$CAF57_{16}$
We begin from behind
$7 = 0111$
$5 = 0101$
$F = 1111$
$A = 1010$
$C = 1100$
We write it upwards (beginning from the bottom)
$1100 \:1010\: 1111\: 0101\: 0111$
Remove any leading zero(s) if any.
Leading zeros are zeros that may be in front of the first set of digits.
In this case, there are no leading zeros.

$\therefore CAF57_{16} = 11001010111101010111_2$
(10.)


This means that $75C$ in base sixteen needs to be converted to a number in base two.

First Method:$\:HEX \rightarrow DEC \rightarrow BIN$
This is a long method.

$ HEX \rightarrow DEC \\[3ex] 75C_{16} \\[3ex] = 7 * 16^2 + 5 * 16^1 + 12 * 16^0 \\[3ex] = 7 * 256 + 5 * 16 + 12 * 1 \\[3ex] = 1792 + 80 + 12 \\[3ex] \therefore 75C_{16} = 1884 \\[3ex] DEC \rightarrow BIN \\[3ex] \begin{array}{c|c} 2 & 1884 \\ \hline 2 & 942 \:R\: 0 \\ \hline 2 & 471 \:R\: 0 \\ \hline 2 & 235 \:R\: 1 \\ \hline 2 & 117 \:R\: 1 \\ \hline 2 & 58 \:R\: 1 \\ \hline 2 & 29 \:R\: 0 \\ \hline 2 & 14 \:R\: 1 \\ \hline 2 & 7 \:R\: 0 \\ \hline 2 & 3 \:R\: 1 \\ \hline 2 & 1 \:R\: 1 \\ \hline & 0 \:R\: 1 \end{array} Count \:the\: remainders\: upwards \\[3ex] 1884 = 11101011100_2 \\[3ex] $ $75C_{16} = 11101011100_2$

Second Method:$\:BIN \rightarrow DEC \rightarrow HEX \rightarrow OCT \rightarrow QUA \:$ Conversion Table
This is a short method.

Remember that each digit in $HEX$ is equivalent to four digits in $BIN$
$75C_{16}$
We begin from behind
$C = 1100$
$5 = 0101$
$7 = 0111$
We write it upwards (beginning from the bottom)
$0111 \:0101\: 1100$
Remove any leading zero(s) if any.
Leading zeros are zeros that may be in front of the first set of digits.
In this case, there is only one leading zero.
$111 \:0101\: 1100$

$\therefore 75C_{16} = 11101011100_2$