If there is one prayer that you should pray/sing every day and every hour, it is the
LORD's prayer (Our FATHER in Heaven prayer)
- Samuel Dominic Chukwuemeka
It is the most powerful prayer.
A pure heart, a clean mind, and a clear conscience is necessary for it.
For in GOD we live, and move, and have our being.
- Acts 17:28
The Joy of a Teacher is the Success of his Students.
- Samuel Dominic Chukwuemeka
Verify your answers as applicable with the
Modulo Arithmetic and Algorithms Calculators
Solve all questions.
Use the four methods for each question where applicable.
Name each method that you use.
If any method is not applicable, state the reason(s) why it is not applicable.
Verify that you have the same answer for each question using the methods.
Show all work.
$1st$ Step: Convert the exponent to a binary base.
$$
\begin{array}{c|c}
2 & 57 \\
\hline
2 & 28 \:R\: 1 \\
\hline
2 & 14 \:R\: 0 \\
\hline
2 & 7 \:R\: 0 \\
\hline
2 & 3 \:R\: 1 \\
\hline
2 & 1 \:R\: 1 \\
\hline
& 0 \:R\: 1
\end{array}
Count \:the\: remainders\: upwards
$$
$$
57 = 111001_2
$$
$2nd$ Step: Write the place values of the binary digit.
$$
\begin{align}
2^5\ \ 2^4\ \ 2^3\ \ 2^2\ \ 2^1\ \ 2^0\ \ \\
1\ \ \ 1\ \ \ 1\ \ \ 0\ \ \ 0\ \ \ 1~~\ \ \
\end{align}
$$
$3rd$ Step: Simplify. Write the main problem as a product of smaller exponents.
$
3^{57} = 3^{(1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0)} \\[3ex]
= 3^{(1 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 0 * 2 + 1 * 1)} \\[3ex]
= 3^{(32 + 16 + 8 + 0 + 0 + 1)} \\[3ex]
Apply \:the\: laws\: of\: exponents \\[3ex]
= 3^{32} * 3^{16} * 3^8 * 3^0 * 3^0 * 3^1 \\[3ex]
= 3^{32} * 3^{16} * 3^8 * 1 * 1 * 1 * 3 \\[3ex]
Going\: forward\:, we\: shall\: forget\: the\: zeros \\[3ex]
There\: is\: no\: need\: to\: write\: them \\[3ex]
Because\: any\: base\: exponent\: zero\: gives\: 1 \\[3ex]
3^{57} \mod 317 \\[3ex]
= (3^{32} * 3^{16} * 3^8 * 3) \mod 317 \\[3ex]
= 3^{32} \mod 317 * 3^{16} \mod 317 * 3^8 \mod 317 * 3 \mod 317 \\[3ex]
3 \mod 317 = \color{red}{3} \\[3ex]
We\: have\: 3^8, \:3^{16}, \:3^{32} \\[3ex]
My\: advice:\: Do\: it\: in\: twos\: assume\: 3^8\: gave\: a\: large\: result \\[3ex]
However,\: 3^8 = 6561 \\[3ex]
So,\: we\: can\: go\: ahead\: and\: do\: it\: directly \\[3ex]
3^8 \mod 317 \\[3ex]
= 6561 \mod 317 \\[3ex]
= \color{red}{221} \\[3ex]
3^{16} \mod 317 = (3^8)^2 \mod 317 \\[3ex]
= (221)^2 \mod 317 \\[3ex]
= 48841 \mod 317 = \color{red}{23} \\[3ex]
3^{32} \mod 317 = (3^{16})^2 \mod 317 \\[3ex]
= (23)^2 \mod 317 \\[3ex]
= 529 \mod 317 \\[3ex]
= \color{red}{212} \\[3ex]
3^{57} \mod 317 \\[3ex]
= (3^{32} * 3^{16} * 3^8 * 3) \mod 317 \\[3ex]
= (3^{32} \mod 317 * 3^{16} \mod 317 * 3^8 \mod 317 * 3 \mod 317) \mod 317 \\[3ex]
= (212 * 23 * 221 * 3) \mod 317 \\[3ex]
= 3232788 \mod 317 \\[3ex]
= 22 \\[3ex]
$
$\therefore 3^{57} \mod 317$ = $22$
$1st$ Step: Write the values of $a, b, n$
Compare $3^{57} \mod 317$ to $a^b \mod n$
$
a = 3 \\[3ex]
b = 57 \\[3ex]
n = 317 \\[3ex]
$
$2nd$ Step: Find the binary representation of $b$
$$
\begin{array}{c|c}
2 & 57 \\
\hline
2 & 28 \:R\: 1 \\
\hline
2 & 14 \:R\: 0 \\
\hline
2 & 7 \:R\: 0 \\
\hline
2 & 3 \:R\: 1 \\
\hline
2 & 1 \:R\: 1 \\
\hline
& 0 \:R\: 1
\end{array}
Count \:the\: remainders\: upwards
$$
$57 = \langle 111001 \rangle$
$3rd$ Step: Form a table and use the Modular Exponentiation algorithm to solve the problem.
$
57 = \langle 111001 \rangle \\[3ex]
\langle 111001 \rangle = 111001_2 \\[3ex]
= 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 \\[3ex]
$
This means that: $i = 5...down\: to\: 0$
$i$ are the exponents.
$b_i$ are the binary representations (the face values).
$
a = 3 \\[3ex]
b = 57 \\[3ex]
n = 317 \\[3ex]
b_5 = 1 \\[3ex]
b_4 = 1 \\[3ex]
b_3 = 1 \\[3ex]
b_2 = 0 \\[3ex]
b_1 = 0 \\[3ex]
b_0 = 1 \\[3ex]
$
Let us do the algorithm step-by-step
Initial: $c = 0$, $d = 1$
For $i = 5$
$b_5 = 1$
$c = 2c$
$c = 2 * 0$
$c = 0$
$d = (d * d) \mod n$
$d = (1 * 1) \mod 317$
$d = 1 \mod 317$
$d = 1$
But $b_5 = 1$
$c = c + 1$
$c = 0 + 1$
$c = 1$
$d = (d * a) \mod n$
$d = (1 * 3) \mod 317$
$d = 3 \mod 317$
$d = 3$
We shall not initial again. The initialization is for the first case.
For $i = 4$
$b_4 = 1$
$c = 2c$
$c = 2 * 1$
$c = 2$
$d = (d * d) \mod n$
$d = (3 * 3) \mod 317$
$d = 9 \mod 317$
$d = 9$
But $b_4 = 1$
$c = c + 1$
$c = 2 + 1$
$c = 3$
$d = (d * a) \mod n$
$d = (9 * 3) \mod 317$
$d = 27 \mod 317$
$d = 27$
For $i = 3$
$b_3 = 1$
$c = 2c$
$c = 2 * 3$
$c = 6$
$d = (d * d) \mod n$
$d = (27 * 27) \mod 317$
$d = 729 \mod 317$
$d = 95$
But $b_3 = 1$
$c = c + 1$
$c = 6 + 1$
$c = 7$
$d = (d * a) \mod n$
$d = (95 * 3) \mod 317$
$d = 285 \mod 317$
$d = 285$
For $i = 2$
$b_2 = 0$
$c = 2c$
$c = 2 * 7$
$c = 14$
$d = (d * d) \mod n$
$d = (285 * 285) \mod 317$
$d = 81225 \mod 317$
$d = 73$
But $b_2 = 0$
Stop.
For $i = 1$
$b_1 = 0$
$c = 2c$
$c = 2 * 14$
$c = 28$
$d = (d * d) \mod n$
$d = (73 * 73) \mod 317$
$d = 5329 \mod 317$
$d = 257$
But $b_1 = 0$
Stop.
For $i = 0$
$b_0 = 1$
$c = 2c$
$c = 2 * 28$
$c = 56$
$d = (d * d) \mod n$
$d = (257 * 257) \mod 317$
$d = 66049 \mod 317$
$d = 113$
But $b_0 = 1$
$c = c + 1$
$c = 56 + 1$
$c = 57$
$d = (d * a) \mod n$
$d = (113 * 3) \mod 317$
$d = 339 \mod 317$
$d = 22$
$i$ | $5$ | $4$ | $3$ | $2$ | $1$ | $0$ |
$b_i$ | $1$ | $1$ | $1$ | $0$ | $0$ | $1$ |
$c$ | $1$ | $3$ | $7$ | $14$ | $28$ | $57$ |
$d$ | $3$ | $27$ | $285$ | $73$ | $257$ |
$22$ return $d$ |
$\therefore 3^{57} \mod 317$ = $22$ |
$1st$ Step: Convert the exponent to a binary base.
$$
\begin{array}{c|c}
2 & 644 \\
\hline
2 & 322 \:R\: 0 \\
\hline
2 & 161 \:R\: 0 \\
\hline
2 & 80 \:R\: 1 \\
\hline
2 & 40 \:R\: 0 \\
\hline
2 & 20 \:R\: 1 \\
\hline
2 & 10 \:R\: 0 \\
\hline
2 & 5 \:R\: 1 \\
\hline
2 & 2 \:R\: 1 \\
\hline
2 & 1 \:R\: 0 \\
\hline
& 0 \:R\: 1
\end{array}
Count \:the\: remainders\: upwards
$$
$$
644 = 1010000100_2
$$
$2nd$ Step: Write the place values of the binary digit.
$$
\begin{align}
2^9\ \ 2^8\ \ 2^7\ \ 2^6\ \ 2^5\ \ 2^4\ \ 2^3\ \ 2^2\ \ 2^1\ \ 2^0 \\
1\ \ \ 0\ \ \ 1\ \ \ 0\ \ \ \ 0\ \ \ \ 0\ \ \ \ 0\ \ \ \ 1\ \ \ 0\ \ \ 0\ \ \
\end{align}
$$
$3rd$ Step: Simplify. Write the main problem as a product of smaller exponents.
$
11^{644} \\[3ex]
Forget\: the\: zeros \\[3ex]
= 11^{(1 * 2^9 + 1 * 2^7 + 1 * 2^2)} \\[3ex]
= 11^{(1 * 512 + 1 * 128 + 1 * 4)} \\[3ex]
= 11^{(512 + 128 + 4)} \\[3ex]
Apply \:the\: laws\: of\: exponents \\[3ex]
= 11^{512} * 11^{128} * 11^4 \\[3ex]
11^{644} \mod 645 \\[3ex]
= (11^{512} * 11^{128} * 11^4) \mod 645 \\[3ex]
= 11^{512} \mod 645 * 11^{128} \mod 645 * 11^4 \mod 645 \\[3ex]
11^4 \mod 645 \\[3ex]
= 14641 \mod 645 \\[3ex]
= \color{red}{451} \\[3ex]
We\: have\: 11^4, 11^{128}, 11^{512} \\[3ex]
My\: advice:\: Do\: it\: gradually\: because\: 11^{128} \:gives\: a\: large\: result \\[3ex]
Let\: us\: do\: 11^8, 11^{16}, 11^{32}, ... \\[3ex]
We \:may\: skip\: around\: if\: we\: find\: a\: result\: that\: is\: not\: large \\[3ex]
11^8 \mod 645 \\[3ex]
= (11^4)^2 \mod 645 \\[3ex]
= 451^2 \mod 645 \\[3ex]
= 203401 \mod 645 \\[3ex]
= 226 \\[3ex]
11^{16} \mod 645 \\[3ex]
= (11^8)^2 \mod 645 \\[3ex]
= 226^2 \mod 645 \\[3ex]
= 51076 \mod 645 \\[3ex]
= 121 \\[3ex]
11^{32} \mod 645 \\[3ex]
= (11^{16})^2 \mod 645 \\[3ex]
= 121^2 \mod 645 \\[3ex]
= 14641 \mod 645 \\[3ex]
= 451 \\[3ex]
Did\: you\: notice\: something?\: \\[3ex]
Let\: us\: save\: some\: time \\[3ex]
11^{64} \mod 645 \\[3ex]
= (11^{32})^2 \mod 645 \\[3ex]
= 451^2 \mod 645 \\[3ex]
= 226 \\[3ex]
11^{128} \mod 645 \\[3ex]
= (11^{64})^2 \mod 645 \\[3ex]
= \color{red}{121} \\[3ex]
11^{256} \mod 645 \\[3ex]
= (11^{128})^2 \mod 645 \\[3ex]
= 451 \\[3ex]
11^{512} \mod 645 \\[3ex]
= (11^{256})^2 \mod 645 \\[3ex]
= \color{red}{226} \\[3ex]
11^{644} \mod 645 \\[3ex]
= (11^{512} * 11^{128} * 11^4) \mod 645 \\[3ex]
= (11^{512} \mod 645 * 11^{128} \mod 645 * 11^4 \mod 645) \mod 645 \\[3ex]
= (226 * 121 * 451) \mod 645 \\[3ex]
= 12333046 \mod 645 \\[3ex]
= 1 \\[3ex]
$
$\therefore 11^{644} \mod 645$ = $1$
$1st$ Step: Write the values of $a, b, n$
Compare $11^{644} \mod 645$ to $a^b \mod n$
$
a = 11 \\[3ex]
b = 644 \\[3ex]
n = 645 \\[3ex]
$
$2nd$ Step: Find the binary representation of $b$
$$
\begin{array}{c|c}
2 & 644 \\
\hline
2 & 322 \:R\: 0 \\
\hline
2 & 161 \:R\: 0 \\
\hline
2 & 80 \:R\: 1 \\
\hline
2 & 40 \:R\: 0 \\
\hline
2 & 20 \:R\: 0 \\
\hline
2 & 10 \:R\: 0 \\
\hline
2 & 5 \:R\: 0 \\
\hline
2 & 2 \:R\: 1 \\
\hline
2 & 1 \:R\: 0 \\
\hline
& 0 \:R\: 1
\end{array}
Count \:the\: remainders\: upwards
$$
$644 = \langle 1010000100 \rangle$
$3^{rd}$ Step: Form a table and use the Modular Exponentiation algorithm to solve the problem.
$
644 = \langle 1010000100 \rangle \\[3ex]
\langle 1010000100 \rangle = 1010000100_2 \\[3ex]
= 1 * 2^9 + 0 * 2^8 + 1 * 2^7 + 0 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 \\[3ex]
$
This means that: $i = 9...down\: to\: 0$
$i$ are the exponents.
$b_i$ are the binary representations (the face values).
$
a = 11 \\[3ex]
b = 644 \\[3ex]
n = 645 \\[3ex]
b_9 = 1 \\[3ex]
b_8 = 0 \\[3ex]
b_7 = 1 \\[3ex]
b_6 = 0 \\[3ex]
b_5 = 0 \\[3ex]
b_4 = 0 \\[3ex]
b_3 = 0 \\[3ex]
b_2 = 1 \\[3ex]
b_1 = 0 \\[3ex]
b_0 = 0 \\[3ex]
$
Let us do the algorithm step-by-step
Initial: $c = 0$, $d = 1$
For $i = 9$
$b_9 = 1$
$c = 2c$
$c = 2 * 0$
$c = 0$
$d = (d * d) \mod n$
$d = (1 * 1) \mod 645$
$d = 1 \mod 645$
$d = 1$
But $b_9 = 1$
$c = c + 1$
$c = 0 + 1$
$c = 1$
$d = (d * a) \mod n$
$d = (1 * 11) \mod 645$
$d = 11 \mod 645$
$d = 11$
We shall not initial again. The initialization is for the first case.
For $i = 8$
$b_8 = 0$
$c = 2c$
$c = 2 * 1$
$c = 2$
$d = (d * d) \mod n$
$d = (11 * 11) \mod 645$
$d = 121 \mod 645$
$d = 121$
But $b_8 = 0$
Stop.
For $i = 7$
$b_7 = 1$
$c = 2c$
$c = 2 * 2$
$c = 4$
$d = (d * d) \mod n$
$d = (121 * 121) \mod 645$
$d = 14641 \mod 645$
$d = 451$
But $b_7 = 1$
$c = c + 1$
$c = 4 + 1$
$c = 5$
$d = (d * a) \mod n$
$d = (451 * 11) \mod 645$
$d = 4961 \mod 645$
$d = 446$
For $i = 6$
$b_6 = 0$
$c = 2c$
$c = 2 * 5$
$c = 10$
$d = (d * d) \mod n$
$d = (446 * 446) \mod 645$
$d = 198916 \mod 645$
$d = 256$
But $b_6 = 0$
Stop.
For $i = 5$
$b_5 = 0$
$c = 2c$
$c = 2 * 10$
$c = 20$
$d = (d * d) \mod n$
$d = (256 * 256) \mod 645$
$d = 65536 \mod 645$
$d = 391$
But $b_5 = 0$
Stop.
For $i = 4$
$b_4 = 0$
$c = 2c$
$c = 2 * 20$
$c = 40$
$d = (d * d) \mod n$
$d = (391 * 391) \mod 645$
$d = 152881 \mod 645$
$d = 16$
But $b_4 = 0$
Stop.
For $i = 3$
$b_3 = 0$
$c = 2c$
$c = 2 * 40$
$c = 80$
$d = (d * d) \mod n$
$d = (16 * 16) \mod 645$
$d = 256 \mod 645$
$d = 256$
But $b_3 = 0$
Stop.
For $i = 2$
$b_2 = 1$
$c = 2c$
$c = 2 * 80$
$c = 160$
$d = (d * d) \mod n$
$d = (256 * 256) \mod 645$
$d = 65536 \mod 645$
$d = 391$
But $b_2 = 1$
$c = c + 1$
$c = 160 + 1$
$c = 161$
$d = (d * a) \mod n$
$d = (391 * 11) \mod 645$
$d = 4301 \mod 645$
$d = 431$
For $i = 1$
$b_1 = 0$
$c = 2c$
$c = 2 * 161$
$c = 322$
$d = (d * d) \mod n$
$d = (431 * 431) \mod 645$
$d = 185761 \mod 645$
$d = 1$
But $b_1 = 0$
Stop.
For $i = 0$
$b_0 = 0$
$c = 2c$
$c = 2 * 322$
$c = 644$
$d = (d * d) \mod n$
$d = (1 * 1) \mod 645$
$d = 1 \mod 645$
$d = 1$
But $b_0 = 0$
Stop.
$i$ | $9$ | $8$ | $7$ | $6$ | $5$ | $4$ | $3$ | $2$ | $1$ | $0$ |
$b_i$ | $1$ | $0$ | $1$ | $0$ | $0$ | $0$ | $0$ | $1$ | $0$ | $0$ |
$c$ | $1$ | $2$ | $5$ | $10$ | $20$ | $40$ | $80$ | $161$ | $322$ | $644$ |
$d$ | $11$ | $121$ | $446$ | $256$ | $391$ | $16$ | $256$ | $431$ | $1$ |
$1$ return $d$ |
$\therefore 11^{644} \mod 645$ = $1$ |